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Abstract 
In this paper, we introduce a new chaotic complex nonlinear system and discuss some basic 

properties of this system including invariance, dissipativity, equilibria and their stability, 

Lyapunov exponents, chaotic behavior and chaotic attractors are studied. This work presents 

chaos synchronization between two identical chaotic complex system by using nonlinear control 

technique. This technique is applied to achieve chaos synchronization. A Lyapunov function is 

derived to prove that the error system is asymptotically stable. These expressions are tested 

numerically and excellent agreement is found. 

Keywords: chaos, synchronization, chaotic system, nonlinear control, error system, Lyapunov functions, 

complex. 

1-Introduction 
Research in the area of the synchronization of dynamical systems dates back over 300 years. 

Huygens, most famous for his studies in optics and the construction of telescopes and clocks, 

was probably the first scientist who observed and described the synchronization phenomenon as 

early as in the 17th century. The pioneering paper on the concept of chaos synchronization was 

not presented until 1990. Pecora and Carroll introduced a method [1] to synchronize two 

identical chaotic systems with different initial conditions. Because of their works, chaos 

synchronization has been intensively studied in the last few years. It has been widely explored in 

a variety of fields including physical, chemical and ecological [2] systems and secure 

communications [3--5]. 

Chaos synchronization is a very important nonlinear phenomenon, which has been studied to 

date on dynamical systems described by real variables. There also exist, however, interesting 

cases of dynamical systems, where the main variables participating in the dynamics are complex, 

as for example when amplitudes of electromagnetic fields are involved. Another example is 

when chaos synchronization is used for communications, where doubling the number of 

variables may be used to increase the content and security of the transmitted information. A 

similar generalization of the real Lorenz system to the corresponding one with complex ODEs 

has been introduced to describe and simulate the physics of laser and thermal convection of 

liquid flows [6-10]. The electric field and atomic polarization amplitude in these systems are 

both complex quantities, whose real and imaginary parts can display chaotic dynamics, for more 

details see, e.g. [11] and references therein. 

Recently, a generalization for the autonomous real nonlinear chaotic system to the complex 

system were introduced by Mahmoud and et al. The dynamical properties and chaotic 

synchronization were studied for this systems, and are shown that they are chaotic and exhibit 

chaotic attractors. The fixed points and their stability are studied of these complex chaotic 

systems [12]. 

In Physica A Qi and et al introduce new chaotic system [13], which is described by: 
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x  ay  x  yz,

y  cx  y  xz,

ż  xy  bz,

  #   

 

where  x,y,z   are real variables. 

In this paper we introduce the complex version of (1), which is written as: 

x  ay  x  yz,

y  cx  y  xz,

ż  1/2xy  xy  bz,

  #   

 

where  a,b,c   are positive parameters,  x  u1  iu2 ,y  u3  iu4   are complex function,  

i  1   and  z   is a real function. Dots represent derivatives with respect to time and  

...    the 

complex conjugate function. 

This paper is organized as follows: In Section 2, the dynamical properties of system (2) including 

invariance, dissipativity, equilibria and their stability, Lyapunov exponents, chaotic behavior and 

chaotic attractors are studied. Section 3 contains the study of chaos synchronization of (2) using 

the nonlinear control technique[14-19]. In this section, also, we calculate expressions for the 

control functions which are used to achieve chaos synchronization. These expressions are tested 

numerically and excellent agreement is found. A Lyapunov function is derived to prove that the 

error system is asymptotically stable. Some figures are presented to show chaos synchronization 

and errors. Finally, in Section 4 the main conclusions of our investigations are summarized. 

2-Dynamical Behaviors of System (2). 
In this section we study the basic dynamical analysis of our new system (2). The real version of 

(2) reads: 

u 1  au3  u1   u3u5 ,

u 2  au4  u2   u4u5 ,

u 3  cu1  u1u5  u3 ,

u 4  cu2  u2u5  u4 ,

u 5  u1u3  u2u4  bu5 .

  #   

 
System (3) has the following basic dynamical properties: 

(2.1) Symmetry and invariance: 
Symmetry about the  u5  -axis, which is invariant for the coordinate transformation 

 u1 ,u2 ,u3 ,u4 ,u5  u1 ,u2 ,u3 ,u4 ,u5.   

(2.2) Dissipation: 
The divergence of (3) is : 

.F  
i1

5
u i

ui

 2a  b  2.

 

(1) 

(2) 

(3) 
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Therefore the system (3) is dissipative for the case  

a   b
2
 1.

 

(2.3) Equilibria and their stability: 
The equilibria of system (3) can be found by solving the following system of equations: 

au3  u1   u3u5  0,

au4  u2   u4u5  0,

cu1  u1u5  u3  0,

cu2  u2u5  u4  0,

u1u3  u2u4  bu5  0.

  #   

 

An isolated one at  E0  0,0,0,0,0   trivial fixed point, as well as two a whole circle of 

equilibria given by the expression: 

 

u1
2  u2

2  ,u1
2  u2

2  ,
 

where: 

  b
4a

c  2  a2 ,  b
4a

c  2  a2 ,  4a  a2  2ac  c2 .
 

The nontrivial fixed points can be written in the form: 

E1  u1 ,   u1
2 , c  u1 ,c     u1

2 ,,

E2  u1 ,   u1
2 , c  u1 ,c     u1

2 ,,
 

where    1

2
c  a     and  

  1

2
c  a  .   

The eigenvalues of the corresponding linearized system at  E0   are: 

1  b,2,3  1
2
1  a  1  2a  a2  4ac ,

4,5  1
2
1  a  1  2a  a2  4ac .

 

The equilibrium  E0   is stable if  b  0   and  c  1,  otherwise it becomes unstable. 

To study the stability of  E1   we have set  u1   cos1  ,  

u2   sin1 ,u3  c    cos1   and  u4  c    sin1   for  1  0,2.   

We consider the Jacobian matrix of system (3) at  E1  : 

 

(4) 
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JE1


a 0 a   0 c    cos1

0 a 0 a   c    sin1

c   0 1 0   cos1

0 c   0 1   sin1

c    cos1 c    sin1  cos1  sin1 b

.

 
We find that their eigenvalues satisfy the characteristic polynomial: 

  a  13  Le2  Lr  Ls  0,
 

where  
Le  1  a  b,Lr  b

2
aa  c    c

a c  a  
  and  

Ls  abb  2c    4  bc  c.   
According to Routh-Hurwitz theorem the necessary and sufficient conditions for all the roots 

have negative real parts if and only if: 

a  1,Le  0,Lr  0 and LeLr  Ls  0.
 

Otherwise these fixed points are unstable. 

For nontrivial equilibria  E2  , their stabilities can be studied by the same way for  E1  . 

(2.4) Lyapunov exponents: 
System (2) in vector notation can be written as: 

U t  hUt;,   #   
 

where  Ut  u1t,u2t,u3t,u4t,u5tt
  is the state space vector,  

h  h1 ,h2 ,h3 ,h4 ,h5t,   is a set of parameters and [...] 
t
  denoting transpose. The equations for 

small deviations  U   from the trajectory  Ut   are: 

U t  LijUt;U, i, j  1,2,3,4,5   #   
  

where  
,

i

i j

j

h
L

u





  is the Jacobian matrix of the form: 

L i,j 

a 0 a  u5 0 u3

0 a 0 a  u5 u4

c  u5 0 1 0 u1

0 c  u5 0 1 u2

u3 u4 u1 u2 b

.

 

The Lyapunov exponents   i   of the system is defined by [20]: 

 i 
t
lim 1

t
log

uit
ui0

.   #   

 

(7) 

(6) 

(5) 
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To find   i  , Eqs. (5) and (6) must be numerically solved simultaneously. Runge-Kutta method 

of order 4 is used to calculate   i  . 

For the case  a  42,b  6,c  28   we calculate the Lyapunov exponents as: 

 1  2.24,2  0,3  0,4  61.9,5  72.84.   

This means that our system (2) for this choice of  a,b   and  c   is a chaotic system since one of 

the Lyapunov exponents is positive. 

In Figure 1a we plot the numerical calculation of the maximal Lyapunov exponent    , with the 

above choice of  a,b   and  c,  which is defined as [20]: 

 
t
lim 1

t
log

Ut
U0

.   #   

 

It is clear that our attractor is chaotic, since     is positive. 

Other sign of chaotic behavior of this system can be shown by plotting the separation of two 

nearby trajectories. Figure (1b) shows two numerically solutions of (2) with two close initial 

conditions ( u10  1,u20  2,u30  3,u40  4,u50  5   and  

ũ10  0.999,ũ20  2,ũ30  3.001,ũ40  4,ũ50  5  ) (we plot only ( t,u1  ) 

diagram) and with the above choice of  a,b   and  c  . It is clear that from Fig. (1b) our system 

displays sensitive dependence on initial conditions. 

(2.5) Dynamics of the new chaotic complex system: 

The values of the parameters and the corresponding dynamical behaviors of (1) can be classified 

numerically for  a  42,b  6,  as follows: 

 i0  c  1  , solutions of (1) approach the trivial fixed point  0,0,0,0,0  , 

 ii1  c  24.4,  solutions of (1) approach one of the nontrivial fixed points  

 iii24.4  c  218  , system (1) has chaotic attractor, see Figures  1c   and  1d  . 

As shown in Figures  1c   and  1d  , the system (1) exhibits chaotic attractor for  a  42,b  6  

and  c  28   with the initial conditions  t  0 :   

u10  1,u20  2,u30  3,u40  4,u50  5.   In Figure  1c   we plot the 3-

dimensional space  u1 ,u2 ,u5   , while in Figure  1d   we plot the motion in the  u3 ,u4 ,u5    

space. 

3-Nonlinear control technique. 
Let us now study chaos synchronization in the complex system (2) using the idea of nonlinear 

control technique as follows: We assume that we have two complex systems and denote the drive 

system by the subscript 1, while the response system to be controlled is denoted by the subscript 

2. The drive and response systems are thus defined respectively as: 

x 1  ay1  x 1  y1z1 ,

y 1  cx 1  y1  x 1z1 ,

ż  1/2x 1y1  x 1y1   bz1 ,

  #   

 
and  

 

(9) 

(8) 
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Figure 1: (a) The Maximum Lyapunov Exponent of this attractor is clearly positive, indicating that the motion on the attractor is 

chaotic for  42, 6a b    and  28c    with  0 1 2 3 4 50, (0) 1, (0) 2, (0) 3, (0) 4, (0) 5t u u u u u        (b)Two numerically 

solutions of (2) for   42, 6a b    and  28c    with  0 1 2 3 4 50, (0) 1, (0) 2, (0) 3, (0) 4, (0) 5t u u u u u         (the solid curve) 

and  1 2 3 4 5(0) .999, (0) 2, (0) 3.001, (0) 4, (0) 5u u u u u        (the dotted curve) , ( t   time/ 10  ).(c) A chaotic attractor of (3) 

at  42, 6a b    and  28c    in  1 3 5( , , )u u u   space and the same value of initial conditions for the solid curve in (a).(d) A 

chaotic attractor of (3) in  2 4 5( , , )u u u   space for the same values of parameters and initial conditions as in (a).                             

.
x 2 ay2  x 2   y2z2  v 1  iv 2,

.
y2 cx 2  y2  x 2z2  v 3  iv 4,

.
z2 1/2x 2y2  x 2y2   bz2  v 5 ,

  #   

 

where  x1  u11  iu21 ,y1  u31  iu41  ,  z1  u51  ,  x2  u12  iu22 ,y2  u32  iu42   and  

z2  u52  , overbar denotes complex conjugation,  v1  iv2  ,  v3  iv4   and  v 5   are complex 

and real control functions respectively, which are to be determined and all  u ij   and  v i   variables 

are real. The complex system (9) can be rewritten in the form of five real first order ODEs of the 

form:  

(10)

) 
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u 11  au31  u11   u31u51 ,

u 21  au41  u21   u41u51 ,

u 31  cu11  u11u51  u31 ,

u 41  cu21  u21u51  u41 ,

u 51  u11u31  u21u41  bu51 .

  #   

 
And the response system (10) in the real form: 

u 12  au32  u12   u32u52  v 1 ,

u 22  au42  u22   u42u52  v 2 ,

u 32  cu12  u12u52  u32  v 3 ,

u 42  cu22  u22u52  u42  v 4 ,

u 52  u12u32  u22u42  bu52  v 5 .

  #   

 
In order to obtain the control signals, we define as the errors between the drive and the response 

system to be controlled the quantities:  

eu 1  ieu 2  x 2  x 1  u12  u11  iu22  u21,

eu 3  ieu 4  y2  y2  u32  u31  iu42  u41,

eu 5  z2  z1  u52  u51 .

  #   

 
and using 

u11u51  u12u52  u51eu 1  eu 5u12 ,

u21u51  u22u52  u51eu 2  eu 5u22 ,

u32u52  u31u51  u32eu 5  eu 3u51 ,

u42u52  u41u51  u42eu 5  eu 4u51 ,

u32u12  u11u31  u32eu 1  eu 3u11 ,

u42u22  u21u41  u42eu 2  eu 4u21 .

  #   

 
Subtracting (9) from (10) using (13) and (14) we get: 

(11)

) 

(12)

) 

(13)

) 

(14)

) 
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ėu 1  iėu 2  aeu 3  eu 1
  u32eu 5  u51eu 3 

 iaeu 4  eu 2
  u42eu 5  u51eu 4

 v 1  iv 2 ,

ėu 3  iėu 4  ceu 1  eu 3  u51eu 1  u12eu 5

 iceu 2  eu 4  u51eu 2  u22eu 5

 v 3  iv 4 ,

ėu 5  u11eu 3  u32eu 1  u21eu 4  u42eu 2  beu 5  v 5 .

  #   

 
Equation (15) describes a dynamical system via which the errors evolve in time and finally the 

ODEs of this system, separating real from imaginary parts, become: 

ėu 1  aeu 3  eu 1
  u32eu 5  u51eu 3  v 1 ,

ėu 2  eu 4  eu 2
  u42eu 5  u51eu 4  v 2 ,

ėu 3  ceu 1  eu 3  u51eu 1  u12eu 5  v 3 ,

ėu 4  ceu 2  eu 4  u51eu 2  u22eu 5  v 4 ,

ėu 5  u11eu 3  u32eu 1  u21eu 4  u42eu 2  beu 5  v 5 .

  #   

 

For positive parameters  a,b   and  c  , we may now define a Lyapunov function by the following 

quantity: 

Vt  1/2
i1

5

eu i

2 .   #   

 

The derivative of  Vt   along the solution of system (15) is: 

V t  aeu 1

2  aeu 2

2  eu 3

2  eu 4

2  beu 5

2 

 eu 1aeu 3  u32eu 5  u51eu 3

 eu 1aeu 4  u42eu 5  u51eu 4

 eu 3
ceu 1  eu 5u12  u51eu 1



 eu 4
ceu 2  eu 5u22  u51eu 2



 eu 5u11eu 3  u32eu 1  u21eu 4  u42eu 2
 

i1

5
v ieu i .

  #   

 

If we choose the active control functions  iv   such that: 

(15)

) 

(16)

) 

(17)

) 

(18)

) 
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v 1  a  1eu 1  aeu 3  u32eu 5  u51eu 3 ,

v 2  a  1eu 2  aeu 4  u42eu 5  u51eu 4 ,

v 3  ceu 1  u51eu 1  u12eu 5 ,

v 4  ceu 2  u51eu 2  u22eu 5 ,

v 5  b  1eu 5  u11eu 3  u32eu 1  u21eu 4  u42eu 2
.

  #   

 
equation (18) yields:  

V t  eu1

2  eu2

2  eu3

2  eu4

2  eu5

2   0.   #   
 

Since  Vt   is a positive definite function and its derivative is negative definite, then Lyapunov's 

direct method implies that the equilibrium point  eu i  0, i  1,2,3,4,5   of the system (16) is 

asymptotically stable, which means that  eu i  0   as  t    ,  i  1,2, . . . ,5  . Systems (9) and 

(10) with (19) are solved numerically (using e.g. Mathematica 5.2 software), for  a  42,b  6   

and  28c    with the initial conditions           11 21 31 41 510 1, 0 2, 0 3, 0 4, 0 5u u u u u        

and  u120  11,u220  30,u320  18,u420  17,u520  45.  

The simulation results are illustrated in Figures  2  and  3 . In Figure  2  the solutions of (9) and 

(10) are plotted subject to different initial conditions and show that the chaos synchronization is 

achieved after very small values of  t  . In Figure  3  it can be seen that the synchronization errors  

eu i   converge to zero, as expected from the above analytical considerations. 

 
Figure 2: Chaos synchronization of systems (4.1) and (5.1) with (12) for  42, 6a b    and  28c     with  

0 11 21 31 41 510, (0) 1, (0) 2, (0) 3, (0) 4, (0) 5t u u u u u         and  12 22 32 42(0) 11, (0) 30, (0) 18, (0) 17u u u u         ,  

52(0) 45.u    (a)  11( )u t   and  12( )u t   versus  ,t  (b)  21( )u t   and  22( )u t   versus  ,t  (c)  31( )u t   and  32( )u t   versus  ,t  (d)  

41( )u t   and  42( )u t   versus  ,t  (e)  51( )u t   and  52( )u t   versus  t   ( t   time/ 10  ). 

(19)

) 

(20)

) 
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Figure 3:  Synchronization errors (solutions of system (16)) 

(a) ( 
1
,ue t  ) diagram,  (b) ( 

2
,ue t  ) diagram,  (c) ( 

3
,ue t  ) diagram,  (d) ( 

4
,ue t  ) diagram,  (e) ( 

5
,ue t  ) diagram. 

Conclusions. 
In this paper, we have introduced a new chaotic complex nonlinear system (2). This system with 

real variables has been introduced and studied in the recent years. Our new complex system 

appears in many important applications in engineering, for example, in communications where 

doubling the number of variables (i.e. introducing complex variables ) may be used to increase 

the content and security of the transmitted information. The basic properties of system (2) 

including invariance, dissipativity, equilibria and their stability, Lyapunov exponents, chaotic 

behavior and chaotic attractors are studied. The chaos synchronization of this chaotic attractors 

are studied via nonlinear control technique as one case of the values of parameters which 

generate chaos. Other cases of these parameters can be similarly treated. A Lyapunov function is 

derived to prove that the error system is asymptotically stable. The results of chaos 

synchronization and the error, are shown in Figures 2 and 3. 
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